Efficient streaming text clustering

نویسنده

  • Shi Zhong
چکیده

Clustering data streams has been a new research topic, recently emerged from many real data mining applications, and has attracted a lot of research attention. However, there is little work on clustering high-dimensional streaming text data. This paper combines an efficient online spherical k-means (OSKM) algorithm with an existing scalable clustering strategy to achieve fast and adaptive clustering of text streams. The OSKM algorithm modifies the spherical k-means (SPKM) algorithm, using online update (for cluster centroids) based on the well-known Winner-Take-All competitive learning. It has been shown to be as efficient as SPKM, but much superior in clustering quality. The scalable clustering strategy was previously developed to deal with very large databases that cannot fit into a limited memory and that are too expensive to read/scan multiple times. Using the strategy, one keeps only sufficient statistics for history data to retain (part of) the contribution of history data and to accommodate the limited memory. To make the proposed clustering algorithm adaptive to data streams, we introduce a forgetting factor that applies exponential decay to the importance of history data. The older a set of text documents, the less weight they carry. Our experimental results demonstrate the efficiency of the proposed algorithm and reveal an intuitive and an interesting fact for clustering text streams-one needs to forget to be adaptive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Online Visual Search Engine for Mining Streaming Text Data in Real-Time

The ever-increasing scale of streaming texts presents a fundamental challenge to analyzing, visualizing and discovering useful information among the endless rivers of text available in social media. In this paper, we present an online visual search engine that efficiently handles querying and retrieval of text streams of interest for understanding streaming tweet data. With regards to the user-...

متن کامل

Distributed Non-Parametric Representations for Vital Filtering: UW at TREC KBA 2014

Identifying documents that contain timely and vital information for an entity of interest, a task known as vital filtering, has become increasingly important with the availability of large document collections. To efficiently filter such large text corpora in a streaming manner, we need to compactly represent previously observed entity contexts, and quickly estimate whether a new document conta...

متن کامل

Design and Test of the Real-time Text mining dashboard for Twitter

One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...

متن کامل

Energy and Latency Efficient Access of Wireless XML Stream

In this article, we address the problem of delayed query processing raised by tree-based index structures in wireless broadcast environments, which increases the access time of mobile clients. We propose a novel distributed index structure and a clustering strategy for streaming XML data that enables energy and latency-efficient broadcasting of XML data. We first define the DIX node structure t...

متن کامل

Density-Based Clustering of Streaming Data Using Weighting Scheme

Clustering of data streams is an important issue in data mining. A large number of algorithms exist for clustering data streams but most of these algorithms give equal weights to all the dimensions of the data stream. Some of the dimensions of the data stream may play important role in clustering while some may be just useless. In this paper, we introduce a density based algorithm in which the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 18 5-6  شماره 

صفحات  -

تاریخ انتشار 2005